
Data Provenance for
Accountability Mechanisms and Properties

Benjamin E. Ujcich1,2 (�), Adam Bates3, and William H. Sanders1,2

1 Department of Electrical and Computer Engineering
2 Information Trust Institute

3 Department of Computer Science
University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

{ujcich2,batesa,whs}@illinois.edu

Abstract. Data provenance has been proposed as a component of ac-
countable systems design because it attributes system events to system
agents and captures how processes use and generate data. However,
achieving “accountability” as part of a mechanism design or as a sys-
tem property remains imprecise since no consensus exists on the term’s
definition. We synthesize prior accountability formalisms to understand
their amenability to data provenance, we show how accountability is re-
lated to assessment of responsibility and blame, and we consider future
challenges in building provenance-driven accountability systems.

1 Introduction

Accountability is a cross-disciplinary concept that straddles the boundaries be-
tween the legal, regulatory, management, and technical domains [1]. Accountabil-
ity has drawn a resurgent interest recently with the rise of automated decision-
making by machine learning algorithms [2–4], where the “right to explanation”
of how such decisions are made is starting to become codified into law [5].

However, a precise and technical definition of accountability—as a mecha-
nism for system design or as a system property to be verified or validated—has
remained elusive. A recent study [6] of systems incorporating “accountability”
found that nearly half of such systems did not explicitly define the term, though
informal definitions typically included the ability to assign responsibility and
blame, provide integrity, enforce (after-the-fact) compliance, collect evidence,
ensure transparency, and provide traceability. We begin with a working defini-
tion of an accountability mechanism as one that binds a system’s states and
events to identities of agents or principals within a system, provides validation
and compliance mechanisms either during operation or after the fact to ensure
correctness of intended behavior or acceptable standards, and ensures the in-
tegrity of records about past events when agents misbehave [7].

Defining an accountability property as a system invariant is even more com-
plicated. Given the various semantics and end goals of accountability, no single
unified and standard accountability formalism exists. This precision gap hinders

1

the comparability of accountability approaches [6]. Thus, a critical and open re-
search question for designing accountable systems is “How can we reason about
a system’s accountability properties in a standardized way?”

We posit that data provenance can help in accountability by design and in
reasoning about accountability properties because provenance captures depen-
dency relationships among data, processes, and agents [8]. To date, however,
few accountable system implementations specifically use data provenance [6].
Because no consensus exists on a precise definition of accountability, we argue
that the accountability–provenance relationship requires more rigorous formula-
tion. Accountability requires reasoning about causality to assess responsibility [9]
and blameworthiness [9–11] among system agents. Provenance captures depen-
dencies with some precision, but standard provenance models’ semantics are too
imprecise for formal reasoning about causality [12].

We study the accountability–provenance relationship, and we consider what
challenges remain. We review the computer science approaches that prior ac-
countability formalisms have taken, particularly for definitions and formal prop-
erties. From these formalisms, we show how the W3C PROV data model can
serve as an underlying structure for accountability [8,13]. We also put forth what
challenges and opportunities remain for provenance and accountability.

2 Approaches to Accountability

Deterrence and Punishment Accountability is complementary to information
security’s traditional goal of preventing undesirable eventsg [14]. Rather than
prevent events, particularly in complex systems in which events’ intents are not
known before they occur or events’ use of data is unclear or not specified, one
can attribute events to agents and thus bring repercussions for violations, even
if punishment happens after such violations occur [15].

Feigenbaum et al. [14] propose an accountability formalism that quantifies
punishment based on event traces and utility functions. In their formalism, a
system changes its state through a set of events, where each event attributed to
one of a set of principals (i.e., agents). An event trace T orders events temporally
(e.g., T = e0e1 means that event e0 happens before event e1), and each event
trace has an expected utility function ui(T) that maps an event trace T to a real
value for each corresponding principal i in the set of principals. Thus, to reason
about accountability, one can model each principal’s utility functions in such a
case where a violation, denoted by event ev, occurs in the trace.

Responsibility and Blameworthiness Assuming that accountable mechanisms
provide attribution by binding system events to the agents that caused them,
assessing which agents are “responsible” for a violation and the extent to which
agents can be “blamed” is not always straightforward. For instance, suppose an
initial event caused by a malicious agent induces benign agents to cause a series
of cascading events that they would not otherwise have taken, causing one of

2

the benign agents to violate a system policy. Is the benign agent considered “re-
sponsible” for the violation because it was a direct cause of it? Is the malicious
agent considered “blameworthy” because it induced others to act?

Chockler and Halpern [9] model the extent to which an event e0 is responsible
for an event e1. Responsibility ρ is defined as ρ = 1

1+|Γ | , 0 ≤ ρ ≤ 1, where Γ

is the contingency set—the number of events that have to change in order for
event e0 to be a counterfactual cause of event e1 (i.e., if e0 did not occur,
then e1 would not have occurred). The extent to which an event is blameworthy
with respect to another event is based on what the agent that caused the event
“knew” (or should have known) about the system’s state, which can be modeled
as the expected degree of responsibility over a probability distribution of possible
events occurring. Feigenbaum et al.’s model [14] makes a distinction between
automatic punishment, in which a violator is punished immediately, and mediated
punishment, in which a violator temporarily increases his or her utility by causing
an event that later leads to a violation.

Judgment Capabilities In issuing judgments against agents after assessing blame,
Jagadeesan et al. [10] propose several properties that describe the extent to which
a system is capable of reasoning about blame, and thus provides accountability:
an upper bound in which every agent that performed a violation is blamed, a
lower bound in which every agent who is blamed performed a violation, an over-
lap in which at least one agent who is blamed performed a violation, a notion of
liveness in which a violation always results in at least one agent’s being blamed,
and a notion of blamelessness in which agents that did not perform a violation
want to demonstrate their innocence. An upper bound may falsely blame inno-
cent agents (i.e., false positives), while a lower bound may miss misbehaving
agents (i.e., false negatives). Küsters et al. [11] propose similar blame proper-
ties for fairness (i.e., honest agents following a protocol are never blamed) and
completeness (i.e., if agents do not follow the protocol, then they are blamed).

3 Towards an Accountability Provenance Structure

The W3C PROV data model (W3C PROV-DM) [8,13] graphically represents a
system’s prior interactions through Agent, Activity (i.e., processes or events), and
Entity (i.e., data) nodes that are connected by relations that capture data, pro-
cess, and responsibility views. From a responsibility view, provenance can provide
attribution of data to the agents that created them through the wasAttributedTo
relation, association of events with the agents that were involved through the
wasAssociatedWith relation, and delegation of tasks from one agent to another
through the actedOnBehalfOf relation [8,13]. However, those relations’ semantics
are defined only at a high level in the PROV data model specification [12,13].

A Motivating Example We revisit the earlier example of a malicious agent and
use it as a motivating example of accountability modeling challenges. Figure 1
shows two provenance graphs representing two series of collected events. Fig-
ure 1a shows the correct and intended behavior of agents a0 and a1. Here, agent

3

a0
a1

…

…

d0

 wAT

e0
 wGB

d1
 wAT

d2
 wAT

wAW

e1

wAW

u

u

u

(a) Correct behavior of event
trace Tcorrect = e0e1.

a0
a1

a2

…

…

d0'

 wAT

e0' wGB

d1
 wAT

d2
 wAT

d3e1' wGB

wAW
wAW

u

u

u

ev

wAW

u

(b) Violating behavior of event trace Tviolation =
e′0e

′
1ev.

Fig. 1. Two provenance graphs showing agents a0, a1, and a2 interacting with activities
e0, e′0, e1, e′1, and ev with two event traces Tcorrect and Tviolation.

a0 creates an entity d0 by way of event e0. Subsequently, agent a1 uses d0, as
well as entities d1 and d2, in event e1.

Now suppose that a0 is malicious and intends to cause a system violation that
eventually manifests itself in the violating event ev, as shown in Figure 1b. Agent
a0 generates a corrupted entity d′0 by way of event e′0. Agent a1 uses entities d′0,

d1, and d2 in event e′1, and, as a result of the event’s internal processes, generates
a corrupted entity d3. At some time later, agent a2 reads the corrupted entity
d3, causing a violating event ev that violates some policy of the system. Suppose
that an auditor detects this, either as soon as ev occurs (e.g., through a reference
monitor) or after it has occurred (e.g., through a routine audit).

Event Traces We can represent event traces in the provenance graph structure as
paths connecting activities through used and wasGeneratedBy relations. Figure 1
shows traces Tcorrect and Tviolation. Feigenbaum et al.’s model [14] assumes
that once violations occur, no actions can undo them. In W3C PROV, we can
see that data that are generated by a violating event and subsequently used by
later events are also subject to the violation. The malicious agent a0 derives a
higher utility from the trace e′0e

′
1 than from e′0e

′
1ev, as otherwise a0 would not

have been incentivized to cause the events leading to the violation.

Responsibility We start with basic approaches to assessing the responsibility of
the actions represented in Figure 1 and argue that a more complex model is
required. From Figure 1b, we might first assume that agent a2 was responsible
for the violating event ev, since ev wasAssociatedWith a2 according to how the
provenance was collected. Under a different approach, we might also surmise
that all agents from which paths exist that start at ev might be responsible to
various degrees, since they all contributed to some past events.

However, when we compare events e1 and e′1 after obtaining evidence of

known correct behavior from Figure 1a, we see that 1) e1 and e′1 differ by one

data value, and 2) e1 does not generate an entity (i.e., entity d3), so does not
subsequently cause a2 to use d3 and cause a violation. Using the Chockler and
Halpern model [9], we can say that the degree of responsibility ρ for d′0 with
respect to d3 is 1. By using evidence of correct behavior as shown in Figure 1a,

4

we see that the contingency set’s size is 0, because the absence of d′0 alone
prevents d3 from being generated.

Blameworthiness Blameworthiness requires “knowledge of” the agent’s state (or
expected state) when the event occurred. Relating the causal responsibility no-
tions to those of blameworthiness by judging which agents ought to be punished
is nontrivial. For instance, without the context explained in the motivating ex-
ample, can one say that agent a0 “knowingly” generated bad data to cause a
violation, or that agent a2 “knowingly” used such data if it was aware of the
system’s policies? The provenance graphs in Figure 1 do not directly capture
that information, but an auditor who has access to additional evidence may be
able to infer patterns and derive probability distributions of events’ likeliness [9].

4 Challenges and Opportunities

For responsibility, the unintended behavior represented in the provenance graph
needs to be compared to correct behavior found in reference events [16]. The
database community has considered causal responsibility concepts as applied to
provenance [16–18], though challenges remain in modeling the semantics in W3C
PROV-DM. Modelers could define the intended provenance structure by using
graph grammars for pattern matching [19,20]. For blameworthiness, an auditor
could look at patterns as proximate evidence of an agent’s “knowledge.”

From a modeling perspective, provenance data are as precise as the level of
granularity at which they are collected, which may create an incomplete view
of the world. In properties of blame [10], external factors that are not captured
in the provenance data may be responsible for a violation, but it would not be
possible to determine that from the provenance data alone. Another challenge
exists in mitigating the dependency explosion if long-running activities use and
generate many entities that are not causally dependent upon each other, leading
to false dependencies and erroneous responsibility and blame.

5 Conclusion

We presented prior accountability formalisms in the context of data provenance
to understand provenance’s ability to aid accountability mechanisms and proper-
ties in systems. We found that accountability formalisms have focused primarily
on modeling of deterrence, responsibility, blame, and judgments, and we outlined
what challenges remain and opportunities exist for data provenance.

Acknowledgments

The authors would like to thank Jenny Applequist for her editorial assistance.
This material is based upon work supported by the Maryland Procurement Office
under Contract No. H98230-18-D-0007 and by the National Science Foundation
under Grant Nos. CNS-1657534 and CNS-1750024.

5

References

1. N. Papanikolaou and S. Pearson, “A cross-disciplinary review of the concept of
accountability,” in Proceedings of the International Workshop on Trustworthiness,
Accountability and Forensics in the Cloud (TAFC), 2011.

2. N. Diakopoulos and S. Friedler, “How to hold algorithms accountable,” MIT Tech-
nology Review, Nov. 2016.

3. R. Binns, “Algorithmic accountability and public reason,” Philosophy & Technol-
ogy, May 2017.

4. J. Kroll, S. Barocas, E. Felten, J. R. Reidenberg, D. Robinson, and H. Yu, “Ac-
countable algorithms,” University of Pennsylvania Law Review, vol. 165, 2016.

5. Council of the European Union, “Regulation (EU) 2016/679 of the European Par-
liament and of the Council of 27 April 2016 (General Data Protection Regulation),”
in Official Journal of the European Union, vol. L 119, May 2016, pp. 1–88.

6. S. Kacianka, K. Beckers, F. Kelbert, and P. Kumari, “How accountability is im-
plemented and understood in research tools,” in Product-Focused Software Pro-
cess Improvement, M. Felderer, D. Méndez Fernández, B. Turhan, M. Kalinowski,
F. Sarro, and D. Winkler, Eds. Springer, 2017.

7. A. R. Yumerefendi and J. S. Chase, “The role of accountability in dependable
distributed systems,” in Proceedings of HotDep ’05. USENIX Association, 2005.

8. L. Moreau and P. Groth, “Provenance: An introduction to PROV,” Synthesis Lec-
tures on the Semantic Web: Theory and Technology, vol. 3, no. 4, pp. 1–129, 2013.

9. H. Chockler and J. Y. Halpern, “Responsibility and blame: A structural-model
approach,” Journal of Artificial Intelligence Research, vol. 22, no. 1, pp. 93–115,
Jul. 2004.

10. R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely, “Towards a theory of account-
ability and audit,” in Proceedings of ESORICS ’09, M. Backes and P. Ning, Eds.
Springer, 2009, pp. 152–167.

11. R. Küsters, T. Truderung, and A. Vogt, “Accountability: Definition and relation-
ship to verifiability,” in Proceedings of ACM CCS ’10. ACM, 2010, pp. 526–535.

12. J. Cheney, “Causality and the semantics of provenance,” in Proceedings of Devel-
opments in Computational Models (DCM ’10), 2010.

13. World Wide Web Consortium, “PROV-DM: The PROV data model,” 2013.
14. J. Feigenbaum, A. D. Jaggard, and R. N. Wright, “Towards a formal model of

accountability,” in Proceedings of NSPW ’11. ACM, 2011, pp. 45–56.
15. F. B. Schneider, “Accountability for perfection,” IEEE Security Privacy, vol. 7,

no. 2, pp. 3–4, March 2009.
16. A. Chen, Y. Wu, A. Haeberlen, W. Zhou, and B. T. Loo, “Differential provenance:

Better network diagnostics with reference events,” in Proceedings of ACM HotNets
’14. ACM, 2015, pp. 25:1–25:7.

17. A. Meliou, W. Gatterbauer, and D. Suciu, “Bringing provenance to its full potential
using causal reasoning,” in Proceedings of TaPP ’11. USENIX Association, 2011.

18. B. Salimi, L. Bertossi, D. Suciu, and G. V. den Broeck, “Quantifying causal ef-
fects on query answering in databases,” in Proceedings of TaPP ’16. USENIX
Association, 2016.

19. M. Lemay, W. U. Hassan, T. Moyer, N. Schear, and W. Smith, “Automated prove-
nance analytics: A regular grammar based approach with applications in security,”
in Proceedings of TaPP ’17. USENIX Association, 2017.

20. W. U. Hassan, M. Lemay, N. Aguse, A. Bates, and T. Moyer, “Towards scalable
cluster auditing through grammatical inference over provenance graphs,” in Pro-
ceedings of NDSS ’18. Internet Society, 2018.

6

