Provenance and Algorithmic Accountability in
Software Engineering

Heather S. Packer!

University of Southampton, Hampshire, SO17 1BJ hp3@soton.ac.uk

Abstract. The frameworks and tools used for software development can
provide insights into software engineering practices and the evolution of
code. Moreover, many of these frameworks provide RESTful APIs that
enable provenance information to be retrospectively modelled. In this
paper, we explore whether information from the software engineering
process can be used to support accountable algorithms. Specifically, we
investigate the Git version control system which has already been mod-
eled in PROV, and layer it with information from Git repositories per-
taining to the software development process such as issue tracking and
pull requests.

Keywords: Provenance - Software Engineering - Git.

1 Introduction

In an ideal world, algorithms would use provenance to model their inputs and
outputs to support their accountability. However, in the real world, this ideal
does not happen because of limited resources and skills. The development pro-
cess creates artifacts that can be leveraged to model a code’s development. Con-
cretely, information from Version Control Systems (VCS) and their workflows
can be used to build provenance models retrospectively without having develop-
ers requiring specialist knowledge.

Building these models could be relatively cheap for developers using sup-
porting tools, however current research has not investigated whether the in-
sights these models could provide would be useful in the terms of algorithmic
accountability. For example, it is possible for these models to describe whether
an algorithm has been developed following a particular process and who is con-
nected to the evolution of features in a code base. But it is unclear what role
this metadata could play in algorithmic accountability.

In order to investigate this, we explore which information can be used to
attribute different activities involved with the evolution of a code base to actors
from a VCS and other tools. In particular, we focus on Git, a VCS which has
already has a tool, Git2PROV, that generates PROV statements about files in a
Git repository. We discuss augmenting this PROV model with information from
the GitHub API which exposes Git pull requests and issue tracking, which pro-
vides information about which code is changed for a particular purpose. Then,



2 H. S. Packer

we also discuss augmenting the model with information from other tools with
RESTful APIs, such as team tools which can provide details about working prac-
tices and Continuous Integration (CI) frameworks which can provide information
about testing and it’s results.

The paper is organised as follows, Section 2 briefly introduces related work.
In Section 3 we discuss Git and Git Workflows, followed by Section 4 which
describes the information we can enhance Git2PROV models. Then in Section
5, we discuss what how our proposed PROV model can support algorithmic
accountability. Lastly, we conclude in Section 6.

2 Related Work

This paper aims to increase the accountability of web-hosted version control
systems. There has been some work which looks at the relationship between col-
laboration and transparency [4], however, despite there widespread use, there
is a lack of focus on making this types of systems support algorithmic account-
ability.

To situate our work, we look at the tool Git2Prov [1] which converts metadata
stored in Git version control system into the PROV format [3]. We investigate
how this model can be extended with inbuilt and third-party tools for Git web-
based hosted services, such as GitHub and BitBucket.

3 Git and Software Engineering

Git manages low-level version control transactions. Git repositories are com-
monly managed using web-based services which host projects. These web-based
repositories, such as GitHub and Bitbucket, provide extra details including de-
ployment strategies and track issues. The evolution of coding projects can vary
greatly due to a team’s working practices and the range of features Git offers to
manage changes, and there is no standardised process on how to interact with
Git. A Git Workflow describes the working practices for a project and defines
how the flow of changes will be applied. A workflow may include how developers
use:

1. Pull requests to encapsulate a set of changes to be made to a code base.
Web-based repositories provide a user-friendly interface for discussing pro-
posed changes before integrating them into the official project.

. Branches to encapsulate the development of a change or feature.

3. Merging Protocol for determining how developers merge their changes,
including which branch to merge to and any pre-merge checks that need to
be satisfied such as code-reviews.

4. Testing Protocol for determining at which stages and which tests should
be executed.

[\

This metadata can be used to extend the information model used by Git2PROV,
to describe higher level transactions made during the software development pro-
cess.



Provenance and Algorithmic Accountability in Software Engineering 3

4 Inbuilt and Third Party Tools

Web-based hosting services for version control of source code provide inbuilt
and third-party tools to support the software development process. These tools
broadly fit into the following categories: 1) Code quality and review tools; 2)
Continuous Integration; 3) Monitoring tools; and 4) Team tools.

4.1 Code Quality and Review Tools

Code Quality provides tools to support code reviews by teams. They use au-
tomated tools, often including static analysis to identify potential issues in the
code. In terms of accountability, code quality tools can provide details about
potential issues and how they are handled by a team, whether its identification
is followed by an issue being added to the issue tracker, or whether there is a
flourish of development on a particular feature, or whether there is no action
taken. Logging the type of potential issue and the actions that follow it, would
allow the practices in different projects and teams to be compared. This would
enable some judgment to be made on the quality of the code.

4.2 Continuous Integration

Continuous integration (CI) tools automatically build and test your code as it
is pushed it to a repository, preventing bugs from being deployed to production.
CI tools are not appropriate for every software project, for example, those that
are small or contain untestable code. However for larger projects, CI has benefits
such as catching integration issues early, enforcing testing discipline and decrease
code review times. The value of CI depends on the coverage, the types, and the
quality of tests. In terms of accountability CI tools can provide information about
commits, the log providing details about the tests performed for each commit
and details about the build.

4.3 Monitoring Tools

Monitoring tools provide real-time metrics and summary reports about the im-
pact of code changes, performance, errors, and analytics. For accountability,
these reports can be used to provide more evidence of specific details about the
software used. Incorporating these reports into a PROV model, enables the com-
parison between different versions of the software and could be related to issues
in the issue tracker.

4.4 Team Tools

Team tools enable management of teams for a project, and their division into
sub-teams to develop features for a project. It enables the developers to manage
permissions, and assign particular teams to a project. In terms of accountability,



4 H. S. Packer

these tools can provide a detailed list of the people on a team and their admin-
istrative rights. Logging how teams evolve using PROV alongside information
about pull requests and issues can show how it’s members are used during soft-
ware development. The experience of a team member can be inferred from the
number of features they have developed, how many times they have reported is-
sues, or how many issues they have fixed. Teams might use different strategies for
addressing issues. For example, teams dealing with low-level issues might contain
less experienced individuals and choose to assign its experienced developers to
high-level issues. Understanding what role and how experienced a team member
is could speak to the importance and complexity of features being developed.

5 Discussion

In this work, we assume that there is a connection between the quality of software
and the quality of its development. The process and the tools used in software’s
development can provide an insight into the role of teams and their involvement
in software development and maintenance, and modeling, this enables us to log:

— The evolution of code, with pull requests and recorded issues;
— The evolution of teams and subteams, alongside code versions;
— Reports detailing performance, test results, errors and analytic details.

We now discuss, how this model can be used to support algorithmic account-
ability, in terms of the principles of accountable algorithms defined in Fairness,
Accountability, and Transparency in Machine Learning !.

5.1 Fairness

Fairness is a core principle, and our PROV model can not ensure that algorithmic
decisions do not create discriminatory or unjust impacts when comparing across
different demographics. It does not support this definition of fairness because it
does not describe how an algorithm works, or it’s inputs and outputs. It provides
a meta-level of information which can be used alongside other approaches that
directly model algorithms and their inputs and outputs.

5.2 Auditability

For an algorithm to be auditable it should enable third parties to probe, under-
stand, and review the behavior an algorithm, and enables monitoring, checking,
or criticism. Where appropriate the provision of detailed documentation, APIs,
and permissive terms of use. The PROV model supports auditability by provid-
ing an accessible model which can be queried using SPARQL. It enables third
parties to monitor and check: the processes and protocols used to develop the
software; testing strategies; who played a role in the development of a particular
software feature; and what events happened during development on bug fixes
and new features and, in general, the evolution of a software system.

! Principles for Accountable Algorithms and a Social Impact Statement for Algo-
rithms: http://www.fatml.org/resources/principles-for-accountable-algorithms



Provenance and Algorithmic Accountability in Software Engineering 5

5.3 Responsibility

To make algorithms responsible there should be externally visible avenues of
redress for adverse individual or societal effects, and there should be a designated
internal person who is responsible for the timely remedy of any reported issues.

Our model does not support this definition of responsibility, it does not pro-
vide an avenue of redress or identify who is responsible for a particular part of
the code. However, it does provide a record of who is involved with the devel-
opment of code features and bug fixes, who reports issues, and the evolution of
team members. And while our model can expose who is attributed to a partic-
ular part of the code, it should not be used to identify who is responsible for
redress; Our approach may only identify coders who are not always responsible
for the policies or design decisions which may be put in place by their company
or institutions. However, the information in our PROV model may support the
person dealing with reported issues.

5.4 Explainability

For an algorithm to be explainable it should ensure that algorithmic decisions,
as well as any data driving those decisions, can be explained to end-users and
other stakeholders in non-technical terms.

In terms of algorithmic accountability, our PROV model would not be able to
speak to algorithmic decisions or the data driving those decisions. However, it can
be used to support the explainability of software development. The PROV model
provides a formalised model to described sequences of activities and entities, and
their relationship to agents, and it is not to most part human understandable.
While the PROV data model is simple, it is hard for humans to parse because
PROV documents tend to become exceptionally complex when modelling just a
few PROV elements. There has been research to improve their understandability,
some of this research has been used to convert a PROV model into human
readable sentences [6, 5], which could be applied to the response of a SPARQL

query.

5.5 Accuracy

Identify, log, and articulate sources of error and uncertainty throughout the
algorithm and its data sources so that expected and worst case implications can
be understood and inform mitigation procedures.

The PROV model does not directly support this principle, however, by for-
malising a log of information from multiple sources into a single connected model
we can provide insight into the events around an error and uncertainty. Under-
standing the development process and the events which happened around the
time of the error could be used to monitor patterns in development, such as
software testing practices, the involvement of specific team members, or rushed
deployment of a new software version. Monitoring the patterns of multiple soft-
ware projects who have reported ’fairness’ issues, could reveal the sequence of



6 H. S. Packer

events or practices that is a symptom of them, and thus could inform software
development best practices.

6 Conclusion

The information provided in the APIs of web-based hosting services for version
control, and any inbuilt and third-party tools, can be used to create a detailed
PROV model describing the software development of algorithms. Their use of
RESTful APIs allows this information to be modelled using PROV. These models
describe the evolution of software and the teams that developed them, and this
software evolution is supported by resolvable reports from inbuilt and third-party
tools.

While these models do not solve algorithmic accountability because they de-
scribe algorithms from a software development perspective, they can be used
to support it. We can describe the events during the development of an algo-
rithm, and thus we can describe and recognise events that may relate or lead to
unfairness.

For future work, we plan to develop tools to build provenance models around
a project’s hosted in web-based services for version control and apply this to var-
ious projects. We will analyse these PROV graphs to establish patterns, describe
classifications, and identify metrics around fairness and fitness for use.

References

1. De Nies, T., Magliacane, S., Verborgh, R., Coppens, S., Groth, P.T., Mannens, E.
and Van de Walle, R. Git2PROV: Exposing Version Control System Content as
W3C PROV. In International Semantic Web Conference (Posters & Demos) (pp.
125-128). (2013)

2. Loeliger, J.: Version Control with Git: Powerful Tools and Techniques for Collabo-
rative Software Development. OReilly Media, Inc. (2009)

3. Groth, P., Moreau, L.: PROV-Overview: An Overview of the PROV Family of Doc-
uments. W3C Working Group Note (2013)

4. Dabbish, Laura, et al. Social coding in GitHub: transparency and collaboration in
an open software repository. Proceedings of the ACM 2012 conference on Computer
Supported Cooperative Work. ACM, 2012.

5. Richardson, Darren P., and Luc Moreau. Towards the domain agnostic generation
of natural language explanations from provenance graphs for casual users. Interna-
tional Provenance and Annotation Workshop. Springer, Cham, (2016)

6. Packer, Heather S. and Moreau, Luc Generating narratives from provenance rela-
tionship chains. At Hypertext and Narrative Hypertext and Narrative, Cyprus. pp.
37-41 (2015)



